aboutsummaryrefslogtreecommitdiff
path: root/mindmap
diff options
context:
space:
mode:
Diffstat (limited to 'mindmap')
-rw-r--r--mindmap/index.org2
-rw-r--r--mindmap/inverse square.org4
-rw-r--r--mindmap/magnetostatics.org2
3 files changed, 6 insertions, 2 deletions
diff --git a/mindmap/index.org b/mindmap/index.org
index 350a564..109ae12 100644
--- a/mindmap/index.org
+++ b/mindmap/index.org
@@ -30,6 +30,7 @@ you to make a web of notes, something close to a wiki.
* I want to Break the Rules
No you don't. That being said, if you really want the list of all articles, here you go:
+@@html: <div class="links-page">@@
#+begin_src shell :results output raw :exports both
set -f
IFS='
@@ -81,3 +82,4 @@ set +f
- [[file:Legendre Transformation.org][Legendre Transformation.org]]
- [[file:Lagrangian mechanics.org][Lagrangian mechanics.org]]
- [[file:Fourier Transform.org][Fourier Transform.org]]
+@@html: </div>@@
diff --git a/mindmap/inverse square.org b/mindmap/inverse square.org
index 132b322..3f980bf 100644
--- a/mindmap/inverse square.org
+++ b/mindmap/inverse square.org
@@ -122,7 +122,9 @@ k\int_{space}\sigma(\vec{r'})((x^{2} + y^{2} + z^{2})^{-3/2} - 3x^{2}(x^{2} + y^
\end{align*}
If we factor out the \((x^{2} + y^{2} + z^{2})^{-\frac{5}{2}}\) term and collecting the like terms:
\begin{align*}
-k\int_{space}\sigma(\vec{r'})(3(x^{2} + y^{2} + z^{2})^{-\frac{3}{2}} - 3(x^{2} + y^{2} + z^{2})(x^{2} + y^{2} + z^{2})^{-\frac{5}{2}})d\tau = k\int_{space}(3(x^{2} + y^{2} + z^{2})^{-\frac{3}{2}} - 3(x^{2} + y^{2} + z^{2})^{-\frac{3}{2}})d\tau = 0.
+k\int_{space}\sigma(\vec{r'})(3(x^{2} + y^{2} + z^{2})^{-\frac{3}{2}} - 3(x^{2} + y^{2} + z^{2})(x^{2} + y^{2} + z^{2})^{-\frac{5}{2}})d\tau \\
+= k\int_{space}(3(x^{2} + y^{2} + z^{2})^{-\frac{3}{2}} - 3(x^{2} + y^{2} + z^{2})^{-\frac{3}{2}})d\tau \\
+= 0.
\end{align*}
So is the divergence of this field zero? Well, not exactly. In order to understand why, we must ask: What happens to the divergence at \(\vec{0}\)?
On first glance, it seems clearly undefined. After all, we're dividing by zero. However, after some amount of inspection, the assumption that our field's divergence
diff --git a/mindmap/magnetostatics.org b/mindmap/magnetostatics.org
index ea763e7..dd9d172 100644
--- a/mindmap/magnetostatics.org
+++ b/mindmap/magnetostatics.org
@@ -56,7 +56,7 @@ Due to the [[id:2a543b79-33a0-4bc8-bd1c-e4d693666aba][inverse square]] law, we k
\begin{align*}
\vec{\nabla} \times (\vec{J} \times \frac{\hat{r}}{r^{2}}) = 4\pi\vec{J}(\vec{r'})\delta(\vec{r}) + (\frac{\hat{r}}{r^{2}} \cdot \vec{\nabla})\vec{J} - (\vec{J} \cdot \vec{\nabla})\frac{\hat{r}}{r^{2}}
\end{align*}
-The first directional derivative is zero because $\vec{J}$ does not depend on the same coordinates as $\vec{\nabla}}$
+The first directional derivative is zero because $\vec{J}$ does not depend on the same coordinates as $\vec{\nabla}$
with the same reasoning as for the divergence, so we have:
\begin{align*}
\vec{\nabla} \times (\vec{J} \times \frac{\hat{r}}{r^{2}}) = 4\pi\vec{J}(\vec{r'})\delta(\vec{r}) - (\vec{J} \cdot \vec{\nabla})\frac{\hat{r}}{r^{2}}