aboutsummaryrefslogtreecommitdiff
path: root/mindmap/magnetostatics.org
diff options
context:
space:
mode:
Diffstat (limited to 'mindmap/magnetostatics.org')
-rw-r--r--mindmap/magnetostatics.org2
1 files changed, 1 insertions, 1 deletions
diff --git a/mindmap/magnetostatics.org b/mindmap/magnetostatics.org
index ea763e7..dd9d172 100644
--- a/mindmap/magnetostatics.org
+++ b/mindmap/magnetostatics.org
@@ -56,7 +56,7 @@ Due to the [[id:2a543b79-33a0-4bc8-bd1c-e4d693666aba][inverse square]] law, we k
\begin{align*}
\vec{\nabla} \times (\vec{J} \times \frac{\hat{r}}{r^{2}}) = 4\pi\vec{J}(\vec{r'})\delta(\vec{r}) + (\frac{\hat{r}}{r^{2}} \cdot \vec{\nabla})\vec{J} - (\vec{J} \cdot \vec{\nabla})\frac{\hat{r}}{r^{2}}
\end{align*}
-The first directional derivative is zero because $\vec{J}$ does not depend on the same coordinates as $\vec{\nabla}}$
+The first directional derivative is zero because $\vec{J}$ does not depend on the same coordinates as $\vec{\nabla}$
with the same reasoning as for the divergence, so we have:
\begin{align*}
\vec{\nabla} \times (\vec{J} \times \frac{\hat{r}}{r^{2}}) = 4\pi\vec{J}(\vec{r'})\delta(\vec{r}) - (\vec{J} \cdot \vec{\nabla})\frac{\hat{r}}{r^{2}}