blob: df750dbd702c20af7bc7ccb1f409ec959a09e0ac (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
:PROPERTIES:
:ID: 6f24f731-60e5-4904-88d7-c63869505981
:ROAM_ALIASES: metric
:END:
#+title: metric space
#+author: Preston Pan
#+html_head: <link rel="stylesheet" type="text/css" href="../style.css" />
#+html_head: <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
#+html_head: <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
#+options: broken-links:t
* Introduction
A metric space $(G, d)$ is a set with a metric $d(x,y): G \times G \rightarrow \mathbb{R}$ defined on members of the set.
This metric is a generalization of distance, with the following properties:
\begin{align}
\label{}
d(x, x) = 0 \\
x \ne y \implies d(x, y) > 0 \\
d(x, y) = d(y, x) \\
d(x, z) \le d(x, y) + d(x, z)
\end{align}
where property $(4)$ is the triangle inequality.
|