1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
:PROPERTIES:
:ID: 6dbe2931-cc18-48fc-8cc1-6c71935a6be3
:ROAM_ALIASES: "mass-spring system"
:END:
#+title: LRC circuit
#+author: Preston Pan
#+html_head: <link rel="stylesheet" type="text/css" href="../style.css" />
#+html_head: <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
#+html_head: <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
#+options: broken-links:t
* Introduction
LRC circuits are equivalent to mass-spring oscillation systems in terms of the [[id:4be41e2e-52b9-4cd1-ac4c-7ecb57106692][differential equation]] generated. In other
words, they are an example of a wave generator. First we introduce the LRC circuit without a voltage source. Later,
another circuit diagram will include a possibly variable voltage source.
#+name: LRC Circuit Without Voltage Source
#+header: :exports both :file lrc_circuit.png
#+header: :imagemagick yes :iminoptions -density 600 :imoutoptions -geometry 400
#+header: :fit yes :noweb yes :headers '("\\usepackage{circuitikz}")
#+begin_src latex :exports both :file
\documentclass{article}
\usepackage{circuitikz}
\begin{document}
\begin{center}
\begin{circuitikz} \draw
(0,0) to[resistor, l=\mbox{$R$}] (0,12)
to[inductor, l=\mbox{$L$}] (12,12)
to[capacitor, l=\mbox{$C$}] (12,0)
(12,0) -- (0,0)
(6,0) -- (6,-3)
to (6, -3) node[shape=ground]{};
\end{circuitikz}
\end{center}
\end{document}
#+end_src
#+RESULTS: LRC Circuit Without Voltage Source
#+begin_export latex
#+end_export
#+CAPTION: LRC Circuit without voltage source
[[./lrc_circuit.png]]
* Mass-Spring Equation Equivalence
We know these relations for the given circuit elements above:
\begin{align}
v(t) = L\frac{di}{dt} \\
i(t) = C\frac{dv}{dt} \\
v = iR
\end{align}
if we analyze the current signal, Kirchhoff's voltage law tells us that the total voltage
drop throughout this circuit is zero. We use the capacitor equation in integral form and sum the voltages:
\begin{align*}
L\frac{di}{dt} + \frac{1}{C}\int i(t)dt + iR = 0
\end{align*}
We then take a derivative to remove the integral:
\begin{align*}
L\frac{d^{2}i}{dt^{2}} + R\frac{di}{dt} + \frac{1}{C}i = 0 \\
(LD^{2} + RD + \frac{1}{C}) i(t) = 0
\end{align*}
it is clear that the characteristic polynomial of this homogeneous linear [[id:4be41e2e-52b9-4cd1-ac4c-7ecb57106692][differential equation]] is:
\begin{align*}
L\lambda^{2} + R\lambda + \frac{1}{C} = 0
\end{align*}
which, utilizing the quadratic formula, has the solutions:
\begin{align*}
\lambda_{1} = \frac{-R + \sqrt{R^{2} - \frac{4L}{C}}}{2L},
\lambda_{2} = \frac{-R - \sqrt{R^{2} - \frac{4L}{C}}}{2L}
\end{align*}
which implies the general solution to this [[id:4be41e2e-52b9-4cd1-ac4c-7ecb57106692][differential equation]] is:
\begin{align*}
i(t) = Ae^{\lambda_{1} t} + Be^{\lambda_{2} t}
\end{align*}
We can make this nicer by setting $-\frac{R}{2L} = m$, $\frac{\sqrt{R^{2} - \frac{4L}{C}}}{2L} = p$,
then $\lambda_{1} = m + p$, $\lambda_{2} = m - p$. Then:
\begin{align*}
i(t) = Ae^{(m + p) t} + Be^{(m - p) t}
\end{align*}
** Underdampened Oscillation
In the case $R^{2} < \frac{4L}{C}$, $p = i\frac{\sqrt{\sigma}}{2L}$ for some $\sigma > 0$. We re-cast $\lambda = \frac{\sqrt{\sigma}}{2L}$ so $p = i\lambda$. Then:
\begin{align*}
i(t) = Ae^{m + i\lambda t} + Be^{m -i\lambda t}
\end{align*}
This function $i(t)$ clearly describes an sinusoidal oscillation.
** Critical Oscillation
In the case $R^{2} - \frac{4L}{C} = 0$, we have:
\begin{align*}
i(t) = Ae^{mt} + Be^{mt} = Ce^{mt}
\end{align*}
note that this is actually a decaying solution because $m$ must be negative.
* AC [[id:951db9ac-3e8b-49a1-b609-2bbb795be834][Voltage]] Source
Here is the circuit diagram for the LRC circuit with a voltage source:
#+name: LRC Circuit
#+header: :export
#+header: :exports both :file lrc_circuit.png
#+header: :imagemagick yes :iminoptions -density 600 :imoutoptions -geometry 400
#+header: :fit yes :noweb yes :headers '("\\usepackage{circuitikz}")
#+begin_src latex :exports both :file
\documentclass{article}
\usepackage{circuitikz}
\begin{document}
\begin{center}
\begin{circuitikz} \draw
(0,0) to[resistor, l=\mbox{$R$}] (0,12)
to[inductor, l=\mbox{$L$}] (12,12)
to[capacitor, l=\mbox{$C$}] (12,0)
(12,0) to[sinusoidal voltage source] (0,0);
\end{circuitikz}
\end{center}
\end{document}
#+end_src
#+RESULTS: LRC Circuit
#+begin_export latex
#+end_export
#+CAPTION: LRC Circuit
[[./lrc_circuit_source.png]]
This new [[id:4be41e2e-52b9-4cd1-ac4c-7ecb57106692][differential equation]] looks like this:
\begin{align*}
[LD^{2} + RD + \frac{1}{C}]i(t) = V_{0}sin(\phi + 2\pi\omega t)
\end{align*}
where the right hand side of the equation includes the term created by the AC [[id:951db9ac-3e8b-49a1-b609-2bbb795be834][voltage]] source. Now we take the
[[id:e73baa24-1a29-4f35-9d3d-0fad4a3a8e59][Laplace Transform]] of both sides (using euler notation to keep track of the phase shift $\phi$):
\begin{align}
\label{}
\mathcal{L}\{LD^{2} + RD + \frac{1}{C}\}i(t) = V_{0}e^{i\phi}\mathcal{L}\{e^{i 2\pi\omega t}\} \\
L(s^{2}I(s) - s i(0) - i'(0)) + R(sI(s) - i(0)) + \frac{1}{C}I(s) = V_{0}e^{i\phi}\mathcal{L}\{e^{i 2\pi\omega t}\} \\
(Ls^{2} + (R - i(0))s + \frac{1}{C})I(s) = V_{0}e^{i\phi}\mathcal{L}\{e^{i 2\pi\omega t}\} + i'(0) + i(0) \\
I(s) = \frac{V_{0}e^{i\phi}\frac{1}{s - 2\pi i \omega} + i'(0) + i(0)}{Ls^{2} + (R - i(0))s + \frac{1}{C}} \\
i(t) = \mathcal{L}^{-1}\{\frac{V_{0}e^{i\phi}}{(s - 2\pi i \omega)(Ls^{2} + (R - i(0))s + \frac{1}{C})}\} +
\mathcal{L}^{-1}\{\frac{i'(0) + i(0)}{Ls^{2} + (R - i(0))s + \frac{1}{C}}\}
\end{align}
We want to use partial fraction decomposition in order to break these denominators apart, so that doing the inverse
transform is easier (the Laplace transform is [[id:ab024db7-6903-48ee-98fc-b2a228709c04][linear]]). Now we already know the roots of the polynomial, and we can
set the root $2\pi i\omega = z_{1}$. Let's also ignore the rightmost term for now:
\begin{align}
\label{Pain}
i(t) = V_{0}e^{i\phi}\mathcal{L}^{-1}\{\frac{1}{(s - z_{1})(s - z_{2})(s - z_{3})}\}
\end{align}
where $z_{2}$ and $z_{3}$ are the two roots we found for the homogeneous case. We then use partial fraction decomposition:
\begin{align}
\label{}
\frac{1}{(s - z_{1})(s - z_{2})(s - z_{3})} = \frac{A}{s - z_{1}} + \frac{B}{s - z_{2}} + \frac{C}{s - z_{3}} \\
A(s - z_{2})(s - z_{3}) + B(s - z_{1})(s - z_{3}) + C(s - z_{1})(s - z_{2}) = 1
\end{align}
from this we know:
\begin{align}
\label{}
A + B + C = 0 \\
z_{2}z_{3}A + z_{1}z_{3}B + z_{1}z_{2}C = 1 \\
(z_{2} + z_{3})A + (z_{1} + z_{3})B + (z_{1} + z_{2})C = 0
\end{align}
Which is a linear system of equations. Eliminating C:
\begin{align}
\label{}
(z_{2}z_{3} - z_{1}z_{2})A + (z_{1}z_{3} - z_{1}z_{2})B = 1 \\
(z_{2} + z_{3})A + (z_{1} + z_{3})B - (z_{1} + z_{2})(A + B) = 0
\end{align}
Now we want to eliminate B:
\begin{align}
\label{}
[(z_{2} + z_{3}) - (z_{1} + z_{2})]A + [(z_{1} + z_{3}) - (z_{1} + z_{2})]B = 0 \\
(z_{3} - z_{1})A + (z_{3} - z_{2})B = 0 \\
B = -\frac{z_{3} - z_{1}}{z_{3} - z_{2}}A \\
\end{align}
finally, we have one equation in terms of A:
\begin{align}
\label{}
[(z_{2}z_{3} - z_{1}z_{2}) - (z_{1}z_{3} - z_{1}z_{2})\frac{z_{3} - z_{1}}{z_{3} - z_{2}}]A = 1 \\
[(z_{2}z_{3} - z_{1}z_{2})\frac{z_{3} - z_{2}}{z_{3} - z_{2}}
- (z_{1}z_{3} - z_{1}z_{2})\frac{z_{3} - z_{1}}{z_{3} - z_{2}}]A = 1 \\
\frac{(z_{2}z_{3} - z_{1}z_{2})(z_{3} - z_{2}) - (z_{1}z_{3} - z_{1}z_{2})(z_{3} - z_{1})}{z_{3} - z_{2}}A = 1 \\
\frac{z_{2}z_{3}^{2} - z_{1}z_{2}z_{3} - z_{2}^{2}z_{3} + z_{1}z_{2}^{2} -
z_{1}z_{3}^{2} + z_{1}z_{2}z_{3} + z_{1}^{2}z_{3} - z_{1}^{2}z_{2}}{z_{3} - z_{2}}A = 1 \\
\frac{z_{2}z_{3}^{2} - z_{2}^{2}z_{3} + z_{1}z_{2}^{2} -
z_{1}z_{3}^{2} + z_{1}^{2}z_{3} - z_{1}^{2}z_{2}}{z_{3} - z_{2}}A = 1 \\
A = \frac{z_{3} - z_{2}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}} \\
B = -\frac{z_{3} - z_{1}}{z_{3} - z_{2}}A \\
B = -\frac{z_{3} - z_{1}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}} \\
C = -(A + B) \\
C = \frac{z_{2} - z_{1}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}}
\end{align}
So we have the three coefficients:
\begin{align}
\label{}
A = \frac{z_{3} - z_{2}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}} \\
B = \frac{z_{1} - z_{3}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}} \\
C = \frac{z_{2} - z_{1}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}}
\end{align}
The resulting solution looks like this:
\begin{align}
\label{}
i(t) = V_{0}e^{i\phi}(Ae^{z_{1}t} + Be^{z_{2}t} + Ce^{z_{3}t})
\end{align}
where:
\begin{align}
\label{}
z_{1} = 2\pi i \omega \\
z_{2} = \frac{-(R - i(0)) + \sqrt{(R - i(0))^{2} - \frac{4L}{C}}}{2L} \\
z_{3} = \frac{-(R - i(0)) - \sqrt{(R - i(0))^{2} - \frac{4L}{C}}}{2L}
\end{align}
by taking the inverse Laplace Transform. The other terms can be either ignored if $i'(0) = 0$ and $i(0) = 0$ or
one can solve for them in the same way. Solving for the two other terms:
\begin{align}
\label{}
\frac{1}{(s - z_{2})(s - z_{3})} = \frac{D}{s - z_{2}} + \frac{E}{s - z_{3}} \\
D(s - z_{3}) + E(s - z_{2}) = 1 \\
D + E = 0 \\
D z_{3} + E z_{2} = -1
\end{align}
We have a much easier linear system:
\begin{align}
\label{}
E = -D \\
D(z_{3} - z_{2}) = -1 \\
D = -\frac{1}{z_{3} - z_{2}} \\
E = \frac{1}{z_{3} - z_{2}}
\end{align}
so the full solution including the terms used for the [[id:bc7e9e01-9721-4b3e-a886-74a2fd27daf3][initial value problem]] looks like this:
\begin{align}
\label{}
i(t) = V_{0}e^{i\phi}(Ae^{z_{1}t} + Be^{z_{2}t} + Ce^{z_{3}t}) + (i'(0) + i(0))(De^{z_{2}t} + Ee^{z_{3}t})
\end{align}
the sinusoidal part of the solution looks like this:
\begin{align}
\label{hello world}
\frac{(z_{3} - z_{2})V_{0}e^{i\phi}e^{2\pi i\omega t}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}}
\end{align}
* Mass-Spring System
Starting from [[id:6e2a9d7b-7010-41da-bd41-f5b2dba576d3][Newtonian mechanics]] in a single dimension:
\begin{align}
\label{}
F_{net} = \sum_{i} m\frac{d^{2}x}{dt}
\end{align}
With Hooke's law:
\begin{align}
\label{}
F = -kx
\end{align}
then:
\begin{align}
\label{}
m\ddot{x} = -kx \\
m\ddot{x} + kx = 0
\end{align}
We can define some damping force to be:
\begin{align}
\label{}
F_{damp} = -a\dot{x}
\end{align}
which will always resist a change in the direction of motion. Then, the new equation is:
\begin{align}
\label{}
m\ddot{x} + a\dot{x} + kx = 0
\end{align}
which has the same form as the above LRC circuit equation. Now, any external driving force will appear
on the right hand side.
|