aboutsummaryrefslogtreecommitdiff
path: root/mindmap/Heaviside Step Function.org
blob: c92a2644500303ba9a9c3c61f15bdfabe7efee6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
:PROPERTIES:
:ID:       53dade38-21e1-4fa9-a552-6ceab8a75f82
:END:
#+title: Heaviside Step Function
#+author: Preston Pan
#+html_head: <link rel="stylesheet" type="text/css" href="../style.css" />
#+html_head: <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
#+html_head: <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
#+options: broken-links:t

* Introduction
the Heaviside Step Function $H(t)$ is an important function in signal analysis. It is defined as follows:
\begin{align}
\label{}
H(t) =
\[   \left\{
\begin{array}{ll}
0 & t \leq 0 \\
1 & t > 0
\end{array}
\right. \]
\end{align}
and it is related to the [[id:90574fea-88f4-4b80-9cda-32cff0bcb76d][dirac delta]] distribution by taking a [[id:31d3944a-cddc-496c-89a3-67a56e821de3][derivative]]:
\begin{align}
\label{}
\frac{dH}{dt} = \delta(t)
\end{align}
Note that this definition of the derivative may be different than that of the regular derivative definition.