aboutsummaryrefslogtreecommitdiff
path: root/mindmap/limit.org
diff options
context:
space:
mode:
Diffstat (limited to 'mindmap/limit.org')
-rw-r--r--mindmap/limit.org16
1 files changed, 14 insertions, 2 deletions
diff --git a/mindmap/limit.org b/mindmap/limit.org
index 65ae15f..22b3280 100644
--- a/mindmap/limit.org
+++ b/mindmap/limit.org
@@ -49,10 +49,22 @@ We know:
\begin{align*}
\lim s_{n} = s \iff \forall \epsilon > 0, \exists N, n > N \implies | s_{n} - s | < \epsilon \\
\end{align*}
-
+which is equivalent to:
+\begin{align*}
+\lim s_{n} = s \iff \forall \epsilon > 0, \exists N, n > N \implies s - \epsilon < s_{n} < s + \epsilon
+\end{align*}
and our sequence $\{s_{n}\}$ is monotone. If $\{s_{n}\}$ is increasing, we have:
\begin{align*}
s_{n + 1} \ge s_{n}
\end{align*}
-for all n.
+for all n. Without loss of generality we shall assume $\{s_{n}\}$ is increasing. Then we take two cases:
+1. $\{s_{n}\}$ is bounded.
+2. $\{s_{n}\}$ is unbounded.
+In the case $\{s_{n}\}$ is bounded:
+\begin{align}
+\label{}
+\exists M, \forall n, s_{n} \le M \\
+s_{0} \le ... \le s_{n} \le s_{n + 1} \le s_{n + 2} \le ... \le M
+\end{align}
+
#+end_proof