diff options
Diffstat (limited to 'mindmap/LRC circuit.org')
-rw-r--r-- | mindmap/LRC circuit.org | 142 |
1 files changed, 140 insertions, 2 deletions
diff --git a/mindmap/LRC circuit.org b/mindmap/LRC circuit.org index b3e8751..bd2f078 100644 --- a/mindmap/LRC circuit.org +++ b/mindmap/LRC circuit.org @@ -1,5 +1,6 @@ :PROPERTIES: :ID: 6dbe2931-cc18-48fc-8cc1-6c71935a6be3 +:ROAM_ALIASES: "mass-spring system" :END: #+title: LRC circuit #+author: Preston Pan @@ -90,7 +91,8 @@ note that this is actually a decaying solution because $m$ must be negative. * AC [[id:951db9ac-3e8b-49a1-b609-2bbb795be834][Voltage]] Source Here is the circuit diagram for the LRC circuit with a voltage source: #+name: LRC Circuit -#+header: :exports both :file lrc_circuit_source.png +#+header: :export +#+header: :exports both :file lrc_circuit.png #+header: :imagemagick yes :iminoptions -density 600 :imoutoptions -geometry 400 #+header: :fit yes :noweb yes :headers '("\\usepackage{circuitikz}") #+begin_src latex :exports both :file @@ -118,4 +120,140 @@ This new [[id:4be41e2e-52b9-4cd1-ac4c-7ecb57106692][differential equation]] look \begin{align*} [LD^{2} + RD + \frac{1}{C}]i(t) = V_{0}sin(\phi + 2\pi\omega t) \end{align*} -where the right hand side of the equation includes the term created by the AC [[id:951db9ac-3e8b-49a1-b609-2bbb795be834][voltage]] source. +where the right hand side of the equation includes the term created by the AC [[id:951db9ac-3e8b-49a1-b609-2bbb795be834][voltage]] source. Now we take the +[[id:e73baa24-1a29-4f35-9d3d-0fad4a3a8e59][Laplace Transform]] of both sides (using euler notation to keep track of the phase shift $\phi$): +\begin{align} +\label{} +\mathcal{L}\{LD^{2} + RD + \frac{1}{C}\}i(t) = V_{0}e^{i\phi}\mathcal{L}\{e^{i 2\pi\omega t}\} \\ +L(s^{2}I(s) - s i(0) - i'(0)) + R(sI(s) - i(0)) + \frac{1}{C}I(s) = V_{0}e^{i\phi}\mathcal{L}\{e^{i 2\pi\omega t}\} \\ +(Ls^{2} + (R - i(0))s + \frac{1}{C})I(s) = V_{0}e^{i\phi}\mathcal{L}\{e^{i 2\pi\omega t}\} + i'(0) + i(0) \\ +I(s) = \frac{V_{0}e^{i\phi}\frac{1}{s - 2\pi i \omega} + i'(0) + i(0)}{Ls^{2} + (R - i(0))s + \frac{1}{C}} \\ +i(t) = \mathcal{L}^{-1}\{\frac{V_{0}e^{i\phi}}{(s - 2\pi i \omega)(Ls^{2} + (R - i(0))s + \frac{1}{C})}\} + +\mathcal{L}^{-1}\{\frac{i'(0) + i(0)}{Ls^{2} + (R - i(0))s + \frac{1}{C}}\} +\end{align} +We want to use partial fraction decomposition in order to break these denominators apart, so that doing the inverse +transform is easier (the Laplace transform is [[id:ab024db7-6903-48ee-98fc-b2a228709c04][linear]]). Now we already know the roots of the polynomial, and we can +set the root $2\pi i\omega = z_{1}$. Let's also ignore the rightmost term for now: +\begin{align} +\label{Pain} +i(t) = V_{0}e^{i\phi}\mathcal{L}^{-1}\{\frac{1}{(s - z_{1})(s - z_{2})(s - z_{3})}\} +\end{align} +where $z_{2}$ and $z_{3}$ are the two roots we found for the homogeneous case. We then use partial fraction decomposition: +\begin{align} +\label{} +\frac{1}{(s - z_{1})(s - z_{2})(s - z_{3})} = \frac{A}{s - z_{1}} + \frac{B}{s - z_{2}} + \frac{C}{s - z_{3}} \\ +A(s - z_{2})(s - z_{3}) + B(s - z_{1})(s - z_{3}) + C(s - z_{1})(s - z_{2}) = 1 +\end{align} +from this we know: +\begin{align} +\label{} +A + B + C = 0 \\ +z_{2}z_{3}A + z_{1}z_{3}B + z_{1}z_{2}C = 1 \\ +(z_{2} + z_{3})A + (z_{1} + z_{3})B + (z_{1} + z_{2})C = 0 +\end{align} +Which is a linear system of equations. Eliminating C: +\begin{align} +\label{} +(z_{2}z_{3} - z_{1}z_{2})A + (z_{1}z_{3} - z_{1}z_{2})B = 1 \\ +(z_{2} + z_{3})A + (z_{1} + z_{3})B - (z_{1} + z_{2})(A + B) = 0 +\end{align} +Now we want to eliminate B: +\begin{align} +\label{} +[(z_{2} + z_{3}) - (z_{1} + z_{2})]A + [(z_{1} + z_{3}) - (z_{1} + z_{2})]B = 0 \\ +(z_{3} - z_{1})A + (z_{3} - z_{2})B = 0 \\ +B = -\frac{z_{3} - z_{1}}{z_{3} - z_{2}}A \\ +\end{align} +finally, we have one equation in terms of A: +\begin{align} +\label{} +[(z_{2}z_{3} - z_{1}z_{2}) - (z_{1}z_{3} - z_{1}z_{2})\frac{z_{3} - z_{1}}{z_{3} - z_{2}}]A = 1 \\ +[(z_{2}z_{3} - z_{1}z_{2})\frac{z_{3} - z_{2}}{z_{3} - z_{2}} +- (z_{1}z_{3} - z_{1}z_{2})\frac{z_{3} - z_{1}}{z_{3} - z_{2}}]A = 1 \\ +\frac{(z_{2}z_{3} - z_{1}z_{2})(z_{3} - z_{2}) - (z_{1}z_{3} - z_{1}z_{2})(z_{3} - z_{1})}{z_{3} - z_{2}}A = 1 \\ +\frac{z_{2}z_{3}^{2} - z_{1}z_{2}z_{3} - z_{2}^{2}z_{3} + z_{1}z_{2}^{2} - +z_{1}z_{3}^{2} + z_{1}z_{2}z_{3} + z_{1}^{2}z_{3} - z_{1}^{2}z_{2}}{z_{3} - z_{2}}A = 1 \\ +\frac{z_{2}z_{3}^{2} - z_{2}^{2}z_{3} + z_{1}z_{2}^{2} - +z_{1}z_{3}^{2} + z_{1}^{2}z_{3} - z_{1}^{2}z_{2}}{z_{3} - z_{2}}A = 1 \\ +A = \frac{z_{3} - z_{2}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}} \\ +B = -\frac{z_{3} - z_{1}}{z_{3} - z_{2}}A \\ +B = -\frac{z_{3} - z_{1}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}} \\ +C = -(A + B) \\ +C = \frac{z_{2} - z_{1}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}} +\end{align} +So we have the three coefficients: +\begin{align} +\label{} +A = \frac{z_{3} - z_{2}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}} \\ +B = \frac{z_{1} - z_{3}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}} \\ +C = \frac{z_{2} - z_{1}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}} +\end{align} +The resulting solution looks like this: +\begin{align} +\label{} +i(t) = V_{0}e^{i\phi}(Ae^{z_{1}t} + Be^{z_{2}t} + Ce^{z_{3}t}) +\end{align} +where: +\begin{align} +\label{} +z_{1} = 2\pi i \omega \\ +z_{2} = \frac{-(R - i(0)) + \sqrt{(R - i(0))^{2} - \frac{4L}{C}}}{2L} \\ +z_{3} = \frac{-(R - i(0)) - \sqrt{(R - i(0))^{2} - \frac{4L}{C}}}{2L} +\end{align} +by taking the inverse Laplace Transform. The other terms can be either ignored if $i'(0) = 0$ and $i(0) = 0$ or +one can solve for them in the same way. Solving for the two other terms: +\begin{align} +\label{} +\frac{1}{(s - z_{2})(s - z_{3})} = \frac{D}{s - z_{2}} + \frac{E}{s - z_{3}} \\ +D(s - z_{3}) + E(s - z_{2}) = 1 \\ +D + E = 0 \\ +D z_{3} + E z_{2} = -1 +\end{align} +We have a much easier linear system: +\begin{align} +\label{} +E = -D \\ +D(z_{3} - z_{2}) = -1 \\ +D = -\frac{1}{z_{3} - z_{2}} \\ +E = \frac{1}{z_{3} - z_{2}} +\end{align} +so the full solution including the terms used for the [[id:bc7e9e01-9721-4b3e-a886-74a2fd27daf3][initial value problem]] looks like this: +\begin{align} +\label{} +i(t) = V_{0}e^{i\phi}(Ae^{z_{1}t} + Be^{z_{2}t} + Ce^{z_{3}t}) + (i'(0) + i(0))(De^{z_{2}t} + Ee^{z_{3}t}) +\end{align} +the sinusoidal part of the solution looks like this: +\begin{align} +\label{hello world} +\frac{(z_{3} - z_{2})V_{0}e^{i\phi}e^{2\pi i\omega t}}{z_{2}z_{3}^{2} + z_{1}z_{2}^{2} + z_{1}^{2}z_{3} - z_{1}z_{3}^{2} - z_{1}^{2}z_{2} - z_{2}^{2}z_{3}} +\end{align} + +* Mass-Spring System +Starting from [[id:6e2a9d7b-7010-41da-bd41-f5b2dba576d3][Newtonian mechanics]] in a single dimension: +\begin{align} +\label{} +F_{net} = \sum_{i} m\frac{d^{2}x}{dt} +\end{align} +With Hooke's law: +\begin{align} +\label{} +F = -kx +\end{align} +then: +\begin{align} +\label{} +m\ddot{x} = -kx \\ +m\ddot{x} + kx = 0 +\end{align} +We can define some damping force to be: +\begin{align} +\label{} +F_{damp} = -a\dot{x} +\end{align} +which will always resist a change in the direction of motion. Then, the new equation is: +\begin{align} +\label{} +m\ddot{x} + a\dot{x} + kx = 0 +\end{align} +which has the same form as the above LRC circuit equation. Now, any external driving force will appear +on the right hand side. |