aboutsummaryrefslogtreecommitdiff
path: root/mindmap/limit.org
diff options
context:
space:
mode:
authorPreston Pan <preston@nullring.xyz>2024-03-14 12:00:32 -0700
committerPreston Pan <preston@nullring.xyz>2024-03-14 12:00:32 -0700
commit7197cd031e6fe12a3efcc98a1ec0c3eb9c986e89 (patch)
treece5171b05557c462dfaf4a5e30f71c053b711f49 /mindmap/limit.org
parent6131810bb69bcb7b221cb332391cd3482920b22b (diff)
add stuff
Diffstat (limited to 'mindmap/limit.org')
-rw-r--r--mindmap/limit.org22
1 files changed, 16 insertions, 6 deletions
diff --git a/mindmap/limit.org b/mindmap/limit.org
index 946e4d2..65ae15f 100644
--- a/mindmap/limit.org
+++ b/mindmap/limit.org
@@ -28,21 +28,31 @@ ordering:
\forall a \in \mathbb{R}, - \infty < a < +\infty
\end{align*}
defined. Note that we can define equivalence relations on these symbols, but algebra reamins undefined.
+** Unbounded Sequences
+Unbounded sequences can still limit to $+\infty$ or $-\infty$, although the limit does not exist
+for many unbounded sequences. If a sequence is one of:
+1. unbounded above
+2. unbounded below
+but not both, it is possible that such sequences limit to $\infty$.
** Limits on Monotone Sequences
An increasing sequence is a sequence $\{s_{n}\}$ defined such that:
\begin{align*}
\forall n \in \mathbb{N}, \forall m \in \mathbb{N}, n \ge m \implies s_{n} \ge s_{m}.
\end{align*}
-and now we wish to prove that the limit of monotone sequences always exist.
-
-\begin{align*}
-\lim s_{n} = s \iff \forall \epsilon > 0, \exists N, n > N \implies | s_{n} - s | < \epsilon \\
-\end{align*}
#+begin_theorem
-If I am bad, then you are too.
+The limit of monotone sequences always exists.
#+end_theorem
#+begin_proof
+We know:
+\begin{align*}
+\lim s_{n} = s \iff \forall \epsilon > 0, \exists N, n > N \implies | s_{n} - s | < \epsilon \\
+\end{align*}
+and our sequence $\{s_{n}\}$ is monotone. If $\{s_{n}\}$ is increasing, we have:
+\begin{align*}
+s_{n + 1} \ge s_{n}
+\end{align*}
+for all n.
#+end_proof