aboutsummaryrefslogtreecommitdiff
path: root/mindmap/Kirchhoff's Laws.org
diff options
context:
space:
mode:
authorPreston Pan <preston@nullring.xyz>2024-05-31 15:05:34 -0700
committerPreston Pan <preston@nullring.xyz>2024-05-31 15:05:34 -0700
commit01ba01763b81a838dcbac4c08243804e068495b9 (patch)
treecf0de71e04334c0cf62abe3228a8483f9692389b /mindmap/Kirchhoff's Laws.org
parentc35d434272e09256030cb113ec62b72c3dbae84f (diff)
add many things; remove useless files
Diffstat (limited to 'mindmap/Kirchhoff's Laws.org')
-rw-r--r--mindmap/Kirchhoff's Laws.org35
1 files changed, 35 insertions, 0 deletions
diff --git a/mindmap/Kirchhoff's Laws.org b/mindmap/Kirchhoff's Laws.org
new file mode 100644
index 0000000..be20a41
--- /dev/null
+++ b/mindmap/Kirchhoff's Laws.org
@@ -0,0 +1,35 @@
+:PROPERTIES:
+:ID: 1d586d6b-bd97-4c59-ad57-8894ae4ac8ba
+:END:
+#+title: Kirchhoff's Laws
+#+author: Preston Pan
+#+html_head: <link rel="stylesheet" type="text/css" href="../style.css" />
+#+html_head: <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
+#+html_head: <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
+#+options: broken-links:t
+
+* Introduction
+Kirchhoff's Laws, along with Ohm's law, create the axioms of circuit analysis. The two laws are the Kirchhoff Voltage Law
+(KVL) and Kirchhoff's Current Law (KCL). They can be derived from an approximation of [[id:fde2f257-fa2e-469a-bc20-4d11714a515e][Maxwell's Equations]].
+** KCL
+:PROPERTIES:
+:ID: 9f7e61fa-a6ed-4d9b-8cdf-7f4ffdd80f06
+:END:
+Due to the [[id:a871e62c-b4a0-4674-9dea-d377de2f780b][continuity equation]] for electrodynamics, current is always conserved locally. In an ideal one-dimensional
+wire, the surface integral can be reduced to a simple line integral, given the current only moves in one direction
+(which we will assume for circuits).
+\begin{align}
+\int I \cdot d\vec{l} = -\frac{\partial Q_{enc}}{\partial t}
+\end{align}
+If the total amount of charge in the wires are conserved:
+\begin{align}
+\label{}
+\int \vec{I} \cdot d\vec{l} = 0
+\end{align}
+Therefore:
+\begin{align}
+\label{}
+\sum_{n}I_{n} = 0
+\end{align}
+where the total current $\vec{I}$ can be decomposed into many currents of each branched path $I_{n}$.
+** KVL