:PROPERTIES: :ID: 36a2715c-a8db-4b75-b799-61ce43be2d2d :END: #+title: inner product space #+author: Preston Pan #+html_head: #+html_head: #+html_head: #+options: broken-links:t * Introduction An inner product space is a [[id:9a1cc2d9-ef99-436c-8c21-9e68fd7df192][normed vector space]] with an inner product defined. This inner product obeys the following properties: \begin{align} \label{} \langle x,y \rangle = \overline{\langle y,x \rangle} \\ \langle ax + by, z \rangle = a\langle x,z \rangle + b\langle y,z \rangle \\ \langle x,x \rangle > 0, x > 0 \\ \langle x,x \rangle = 0, x = 0 \end{align} where $\overline{\langle y,x \rangle}$ is the complex conjugate of $\langle x,y \rangle$. This gives rise to a normed vector space: \begin{align} \label{} \lVert x \rVert = \langle x,x \rangle \end{align}