:PROPERTIES: :ID: fde2f257-fa2e-469a-bc20-4d11714a515e :END: #+title: Maxwell's Equations #+author: Preston Pan #+html_head: #+html_head: #+html_head: #+options: broken-links:t * Introduction Maxwell's Equations are a set of four differential equations in multiple dimensions that produce a complete classical theory of electromagnetic phenomena. * Derivations These are the derivations of all four laws in their differential forms based on the [[id:2a543b79-33a0-4bc8-bd1c-e4d693666aba][inverse square]] law for [[id:32f0b8b1-17bc-4c91-a824-2f2a3bbbdbd1][electrostatics]] ([[id:5388f4e8-7bb8-452e-b997-fe9892aefcf3][Coulomb's Law]]), the [[id:658f3916-6b7f-4897-85c6-9acc82b13214][Lorentz Force]], as well as the [[id:a871e62c-b4a0-4674-9dea-d377de2f780b][continuity equation]] and electromagnetic induction (which are just special cases of [[id:e38d94f2-8332-4811-b7bd-060f80fcfa9b][special relativity]]) as initial assumptions: ** Gauss' Law This is given by the divergence of an [[id:2a543b79-33a0-4bc8-bd1c-e4d693666aba][inverse square]] field, specifically for an electric field which is the same as in [[id:32f0b8b1-17bc-4c91-a824-2f2a3bbbdbd1][electrostatics]]: \begin{align*} \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_{0}} \end{align*} ** Divergence of Magnetic Field The divergence of the magnetic field is the same as in [[id:5c36d0f1-06ad-436a-a56f-5ecc198b9b3e][magnetostatics]]: \begin{align*} \vec{\nabla} \cdot \vec{B} = 0 \end{align*} ** Ampere's Law with Modifications The [[id:5c36d0f1-06ad-436a-a56f-5ecc198b9b3e][magnetostatic]] magnetic field is given by the Bio-Savart Law, which can be derived from [[id:e38d94f2-8332-4811-b7bd-060f80fcfa9b][special relativity]] and [[id:5388f4e8-7bb8-452e-b997-fe9892aefcf3][Coulomb's Law]]: \begin{align*} \vec{B} = \frac{\mu_{0}}{4\pi}\int_{V}\frac{\vec{J} \times \hat{r}}{r^{2}}d\tau \end{align*} Now the curl of this field is given by [[id:5c36d0f1-06ad-436a-a56f-5ecc198b9b3e][magnetostatics]]: \begin{align*} \vec{\nabla} \times \vec{B} = \mu_{0}\vec{J} \end{align*} However, if you take the divergence of this equation, the left hand side reduces to zero by the definition of the [[id:4bfd6585-1305-4cf2-afc0-c0ba7de71896][del operator]], but the right hand side does not always: \begin{align*} \vec{\nabla} \cdot \mu_{0}\vec{J} = \mu_{0} (\vec{\nabla} \cdot \vec{J}) \neq 0 \end{align*} Given this problem, a correction is given via the [[id:a871e62c-b4a0-4674-9dea-d377de2f780b][continuity equation]]: \begin{align*} \vec{\nabla} \cdot \vec{J} = -\frac{\partial \rho}{\partial t} \\ \epsilon_{0}(\vec{\nabla} \cdot \vec{E}) = \rho \\ \vec{\nabla} \cdot \vec{J} = -\epsilon_{0}\vec{\nabla} \cdot \frac{\partial\vec{E}}{\partial t} \end{align*} So therefore when we account for the fact that $\vec{\nabla} \cdot \vec{\nabla} \times \vec{B} = 0$ \begin{align*} \vec{\nabla} \times \vec{B} = \mu_{0}\vec{J} + \mu_{0}\epsilon_{0}\frac{\partial\vec{E}}{\partial t} \end{align*} ** Faraday's Law of Induction By definition of electromagnetic induction (and to make Ampere's law consistent with relativity): \begin{align*} \vec{\nabla} \times \vec{E} = - \frac{\partial\vec{B}}{\partial t} \end{align*} Instead of assuming induction as an axiom, it is possible to fix Ampere's equation with the [[id:a871e62c-b4a0-4674-9dea-d377de2f780b][continuity equation]] first, and then assume Lorentz symmetry. This explanation is a work in progress. * Implications Maxwell's Equations can be used to calculate all electromagnetic phenomena on the macro scale all the way down to the atom. In practice, solving Maxwell's Equations can be analytically impossible, so several simplifying assumptions are often made. To recap, these are the four equations: \begin{align*} \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_{0}} \\ \vec{\nabla} \times \vec{E} = -\frac{\partial\vec{B}}{\partial t} \\ \vec{\nabla} \cdot \vec{B} = 0 \\ \vec{\nabla} \times \vec{B} = \mu_{0}\vec{J} + \mu_{0}\epsilon_{0}\frac{\partial\vec{E}}{\partial t} \end{align*} * Speed of Light Maxwell's Equations can be shown to reproduce the speed of light in a vacuum, where: \begin{align*} \mu_{0}\epsilon_{0} = \frac{1}{c^{2}} \end{align*} * Relativity It is known that Maxwell's Equations are consistent with [[id:e38d94f2-8332-4811-b7bd-060f80fcfa9b][special relativity]] and can be expressed in terms of curved spacetime. In fact, if relativity is taken as an axiom, it can be proven that the electric and magnetic fields are descriptions of the same phenomena; this can be taken as a specific example of a [[id:1b1a8cff-1d20-4689-8466-ea88411007d7][duality]].