:PROPERTIES: :ID: 23df3ba6-ffb2-4805-b678-c5f167b681de :END: #+title: Legendre Transformation #+author: Preston Pan #+html_head: #+html_head: #+html_head: #+options: broken-links:t * Definition The Legendre Transformation represents a function in terms of the y-intercept of the tangent line at every point on the function. we start with the equation for a tangent line: \begin{align*} y = mx + b \end{align*} However, the Legendre transform actually solves for $b$. For a general function $f(x)$ we define the tangent line to a point on that function to be: \begin{align*} y = y'(x)x - b \end{align*} where subtracting $b$ is the convention, for some reason. Then solving for b: \begin{align*} b = y'(x)x - y \end{align*} The actual Legendre Transform requires $b$ to be a function of $y'$, therefore: \begin{align*} x(f') = (f'(x))^{-1} \\ L\{f(x)\} = b(f') = f'x(f') - f((x(f')) \end{align*} In [[id:83da205c-7966-417e-9b77-a0a354099f30][Lagrangian mechanics]], the Hamiltonian can be defined as the Legendre transform of the Lagrangian.