:PROPERTIES: :ID: 1d586d6b-bd97-4c59-ad57-8894ae4ac8ba :END: #+title: Kirchhoff's Laws #+author: Preston Pan #+description: basic laws of circuit analysis #+html_head: #+html_head: #+html_head: #+options: broken-links:t * Introduction Kirchhoff's Laws, along with [[id:3cdce475-7644-4529-a447-6e790ad4055f][Ohm's Law]], create the axioms of [[id:a7d6d6e9-9f7a-446f-b6af-255c802f86b1][circuit analysis]]. The two laws are the Kirchhoff Voltage Law (KVL) and Kirchhoff's Current Law (KCL). They can be derived from an approximation of [[id:fde2f257-fa2e-469a-bc20-4d11714a515e][Maxwell's Equations]]. ** KCL :PROPERTIES: :ID: 9f7e61fa-a6ed-4d9b-8cdf-7f4ffdd80f06 :END: Due to the [[id:a871e62c-b4a0-4674-9dea-d377de2f780b][continuity equation]] for electrodynamics, current is always conserved locally. In an ideal one-dimensional wire, the surface integral can be reduced to a simple line integral, given the current only moves in one direction (which we will assume for circuits). \begin{align} \int I \cdot d\vec{l} = -\frac{\partial Q_{enc}}{\partial t} \end{align} If the total amount of charge in the wires are conserved: \begin{align} \label{} \int \vec{I} \cdot d\vec{l} = 0 \end{align} Therefore: \begin{align} \label{} \sum_{n}^{N}I_{n} = 0 \end{align} where the total current $\vec{I}$ can be decomposed into many currents of each branched path $I_{n}$. ** KVL :PROPERTIES: :ID: 92c952ee-f1f3-4782-b9e2-6fecb56caac6 :END: The Kirchhoff voltage law can be derived also from [[id:fde2f257-fa2e-469a-bc20-4d11714a515e][Maxwell's Equations]], specifically the [[id:63713308-0ff7-433f-8103-8b64ba9bdbe1][electrostatics]] equations that formulate the electric field as an [[id:951db9ac-3e8b-49a1-b609-2bbb795be834][electrostatic potential]]: \begin{align} \label{} \vec{E} = -\vec{\nabla}V \end{align} more specifically, the [[id:951db9ac-3e8b-49a1-b609-2bbb795be834][potential difference]] across a circuit element can be defined by $\int \vec{E} \cdot d\vec{l} = V(b) - V(a)$, where $a$ and $b$ correspond to the positions before and after the circuit element. We know from electrostatics that: \begin{align} \label{} \oint \vec{E} \cdot d\vec{l} = 0 \end{align} and from the superposition principle we know: \begin{align} \label{} V_{tot} = \sum V_{i} \end{align} so the total voltage drop, or potential difference around the entire circuit must be zero: \begin{align} \label{} \sum_{n=0}^{N}V_{n} = 0 \end{align}