:PROPERTIES: :ID: 53dade38-21e1-4fa9-a552-6ceab8a75f82 :END: #+title: Heaviside Step Function #+author: Preston Pan #+html_head: #+html_head: #+html_head: #+options: broken-links:t * Introduction the Heaviside Step Function $H(t)$ is an important function in signal analysis. It is defined as follows: \begin{align} \label{} H(t) = \[ \left\{ \begin{array}{ll} 0 & t \leq 0 \\ 1 & t > 0 \end{array} \right. \] \end{align} and it is related to the [[id:90574fea-88f4-4b80-9cda-32cff0bcb76d][dirac delta]] distribution by taking a [[id:31d3944a-cddc-496c-89a3-67a56e821de3][derivative]]: \begin{align} \label{} \frac{dH}{dt} = \delta(t) \end{align} Note that this definition of the derivative may be different than that of the regular derivative definition.