From a7da57c0736bec58d1fc4ec99d211099c31bb45f Mon Sep 17 00:00:00 2001 From: Preston Pan Date: Wed, 24 Jan 2024 19:26:59 -0800 Subject: new content --- mindmap/derivative.org | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) (limited to 'mindmap/derivative.org') diff --git a/mindmap/derivative.org b/mindmap/derivative.org index be84116..d046459 100644 --- a/mindmap/derivative.org +++ b/mindmap/derivative.org @@ -7,7 +7,6 @@ #+html_head: #+html_head: #+options: broken-links:t -#+OPTIONS: tex:dvipng * Derivation Let's say we want to know the rate of change of the [[id:b1f9aa55-5f1e-4865-8118-43e5e5dc7752][function]] \(f(x) = x^{2}\). Because this [[id:b1f9aa55-5f1e-4865-8118-43e5e5dc7752][function]] is not @@ -76,14 +75,17 @@ We derive many of them here. = \frac{d}{dx}f(x) + \frac{d}{dx}g(x) \end{align*} of course, subtraction works in the same way. -** Multiplication Rule +** product rule +:PROPERTIES: +:ID: d1e245f4-0b04-450e-8465-a9c85fe57f7e +:END: \begin{align*} \frac{d}{dx}(f(x)g(x)) = \lim_{h\to0}\frac{f(x + h)g(x + h) - f(x)g(x)}{h} = \lim_{h\to0}\frac{f(x + h)g(x + h) - f(x)g(x + h) + f(x)g(x + h) - f(x)g(x)}{h} \\ = \lim_{h\to0}\frac{g(x + h)(f(x + h) - f(x)) + f(x)(g(x + h) - g(x))}{h} \\ = g(x)\lim_{h\to0}\frac{f(x + h) - f(x)}{h} + f(x)\frac{g(x + h) - g(x)}{h} = g(x)f'(x) + g'(x)f(x) \end{align*} And using the this rule as well as the chain rule and power rule which we will show later, the division rule is easily acquired. -** Chain Rule +** chain rule :PROPERTIES: :ID: ffd1bc3d-ab64-4916-9c09-0c89d2731b6d :END: -- cgit