diff options
Diffstat (limited to 'mindmap/magnetostatics.org')
-rw-r--r-- | mindmap/magnetostatics.org | 91 |
1 files changed, 91 insertions, 0 deletions
diff --git a/mindmap/magnetostatics.org b/mindmap/magnetostatics.org new file mode 100644 index 0000000..ea763e7 --- /dev/null +++ b/mindmap/magnetostatics.org @@ -0,0 +1,91 @@ +:PROPERTIES: +:ID: 5c36d0f1-06ad-436a-a56f-5ecc198b9b3e +:END: +#+title: magnetostatics +#+author: Preston Pan +#+html_head: <link rel="stylesheet" type="text/css" href="../style.css" /> +#+html_head: <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> +#+html_head: <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> +#+options: broken-links:t + +* Introduction +Magnetostatics is a little bit of an oxymoron; the magnetic field is created by a moving current of charges and a magnetic +field for a point charge is therefore hard to model or often wrong; because magnetostatics assumes a steady current, a point +charge moving cannot be replaced with another charge. However, for some continuous current distribution, the magnetic field is: +\begin{align*} +\vec{B} = \frac{\mu_{0}}{4\pi}\int_{V}\frac{\vec{J} \times \hat{r}}{r^{2}}dV +\end{align*} +Which is the Bio-Savart law. Later, we will derive this from the axioms of [[id:32f0b8b1-17bc-4c91-a824-2f2a3bbbdbd1][electrostatics]] and [[id:e38d94f2-8332-4811-b7bd-060f80fcfa9b][special relativity]]. + +* Divergence of B +The divergence of B is given by: +\begin{align*} +\vec{\nabla} \cdot \vec{B} = \frac{\mu_{0}}{4\pi}\int_{V}\frac{\vec{\nabla} \cdot (\vec{J} \times \hat{r})}{r^{2}}dV += \frac{\mu_{0}}{4\pi}\int_{V}\vec{\nabla} \cdot (\vec{J} \times \frac{\hat{r}}{r^{2}})dV \\ +\end{align*} +Now we want to evaluate $\vec{\nabla} \cdot \vec{J} \times \frac{\hat{r}}{r^{2}}$ using the [[id:4bfd6585-1305-4cf2-afc0-c0ba7de71896][del operator]] rules: +\begin{align*} +\vec{\nabla} \cdot \vec{J} \times \frac{\hat{r}}{r^{2}} = (\vec{\nabla} \times \vec{J}) \cdot \frac{\hat{r}}{r^{2}} - \vec{J} \cdot (\vec{\nabla} \times \frac{\hat{r}}{r^{2}}) +\end{align*} +And while $B$, and by extension $\vec{\nabla}$ is dependent on $\vec{r}$, the radial distance between two charges, +$\vec{J}$ is a function of $r'$, the position vector to a given charge. This, of course, means that $J$ does not +depend on any of the variables that we are taking the derivative over. Thus: +\begin{align*} +\vec{\nabla} \times \vec{J} = 0 +\end{align*} +Also, due to the [[id:2a543b79-33a0-4bc8-bd1c-e4d693666aba][inverse square]] law, the curl of $\frac{\hat{r}}{r^{2}}$ is zero, and therefore: +\begin{align*} +\vec{\nabla} \cdot \vec{J} \times \frac{\hat{r}}{r^{2}} = 0 +\end{align*} +And therefore: +\begin{align*} +\vec{\nabla} \cdot \vec{B} = 0 +\end{align*} +This is one of [[id:fde2f257-fa2e-469a-bc20-4d11714a515e][Maxwell's Equations]]. +* Curl of B +The curl of $\vec{B}$ is given by: +\begin{align*} +\vec{\nabla} \times \vec{B} = \frac{\mu_{0}}{4\pi}\int_{V}\frac{\vec{\nabla} \times (\vec{J} \times \hat{r})}{r^{2}}dV \\ += \frac{\mu_{0}}{4\pi}\int_{V}\vec{\nabla} \times (\vec{J} \times \frac{\hat{r}}{r^{2}})dV +\end{align*} +where $\vec{\nabla} \times \vec{J} \times \hat{r}$ is given by the [[id:4bfd6585-1305-4cf2-afc0-c0ba7de71896][del operator]] identity: +\begin{align*} +\vec{\nabla} \times (\vec{J} \times \frac{\hat{r}}{r^{2}}) = \vec{J}(\vec{\nabla} \cdot \frac{\hat{r}}{r^{2}}) - \frac{\hat{r}}{r^{2}}(\vec{\nabla} \cdot \vec{J}) + (\frac{\hat{r}}{r^{2}} \cdot \vec{\nabla})\vec{J} - (\vec{J} \cdot \vec{\nabla})\frac{\hat{r}}{r^{2}} +\end{align*} +Due to the [[id:2a543b79-33a0-4bc8-bd1c-e4d693666aba][inverse square]] law, we know that $\vec{\nabla} \cdot \frac{\hat{r}}{r^{2}} = 4\pi\delta(\vec{r})$; From the section above we know that $\vec{\nabla} \cdot \vec{J} = 0$; hence: +\begin{align*} +\vec{\nabla} \times (\vec{J} \times \frac{\hat{r}}{r^{2}}) = 4\pi\vec{J}(\vec{r'})\delta(\vec{r}) + (\frac{\hat{r}}{r^{2}} \cdot \vec{\nabla})\vec{J} - (\vec{J} \cdot \vec{\nabla})\frac{\hat{r}}{r^{2}} +\end{align*} +The first directional derivative is zero because $\vec{J}$ does not depend on the same coordinates as $\vec{\nabla}}$ +with the same reasoning as for the divergence, so we have: +\begin{align*} +\vec{\nabla} \times (\vec{J} \times \frac{\hat{r}}{r^{2}}) = 4\pi\vec{J}(\vec{r'})\delta(\vec{r}) - (\vec{J} \cdot \vec{\nabla})\frac{\hat{r}}{r^{2}} +\end{align*} +The second term reduces to zero for some reason (reason coming later; I currently do not know why). Now plugging this back into the original equation: +\begin{align*} +\vec{\nabla} \times \vec{B} = \frac{\mu_{0}}{4\pi}\int_{V}4\pi\vec{J}(r')\delta(\vec{r})dV \\ += \mu_{0}\int_{V}\vec{J}(r')\delta(\vec{r'} - \vec{r''})dV +\end{align*} +Where $r''$ is the location of the test particle. Now the [[id:90574fea-88f4-4b80-9cda-32cff0bcb76d][dirac delta]] distribution propreties under an integral: +\begin{align*} +\vec{\nabla} \times \vec{B} = \mu_{0}\vec{J}(\vec{r''}) +\end{align*} +or simply: +\begin{align*} +\vec{\nabla} \times \vec{B} = \mu_{0}\vec{J} +\end{align*} +This is for magnetostatics only; [[id:fde2f257-fa2e-469a-bc20-4d11714a515e][Maxwell's Equations]] offer a correction to this equation. +* The Vector Potential +We can define a /vector potential/ $\vec{A}(\vec{r})$ such that: +\begin{align*} +\vec{B} = \vec{\nabla} \times \vec{A} +\end{align*} +which is consistent with the fact that: +\begin{align*} +\vec{\nabla} \cdot \vec{B} = 0 +\end{align*} +By taking the divergence of both sides in the first equation in this section. When $\vec{J}$ is zero at infinity: +\begin{align*} +\vec{A} = \frac{\mu_{0}}{4\pi}\int_{V}\frac{\vec{J}}{r}d\tau +\end{align*} +The reasoning for this is not obvious, even to me. One could analogize this to the scalar potential for [[id:32f0b8b1-17bc-4c91-a824-2f2a3bbbdbd1][electrostatics]]. |